I used the following resources to educate myself in the past years. Some editions of the textbooks listed below might be old. Try to find the newest editions to be up-to-date with latest advancements. The lists are written in alphabetical order.

Online Courses

Artificial Intelligence

Causal Inference

Computer Science

Mathematics

Neuroscience

Textbooks

Artificial Intelligence

  • Stuart J. Russell, Peter Norvig. Artificial Intelligence: A Modern Approach (3rd Edition). Pearson Education, 2010.
  • Jiawei Han, Micheline Kamber, Jian Pei. Data Mining: Concepts and Techniques (3rd Edition). Elsevier Inc., 2011.
  • Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning. MIT Press, 2016.
  • Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
  • Richard S. Sutton, Andrew G. Barto. Reinforcement Learning: An Introduction (2nd Edition). MIT Press, 2018.
  • Dan Jurafsky, James H. Martin. Speech and Language Processing (2nd Edition). Pearson, 2014.

Causal Inference

  • Judea Pearl, Madelyn Glymour, Nicholas P. Jewell. Causal Inference in Statistics: A Primer. Wiley, 2016.
  • Jonas Peters, Dominik Janzing, Bernhard Schölkopf. Elements of Causal Inference: Foundations and Learning Algorithms. MIT Press, 2017.

Computer Science

  • David A. Patterson, John L. Hennessy. Computer Organization and Design: The Hardware/Software Interface (4th Edition). Morgan Kaufmann, 2012.
  • Ramez Elmasri, Shamkant Navathe. Fundamentals of Database Systems (7th Edition). Pearson Education, 2016.
  • Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction to Algorithms (3rd Edition). MIT Press, 2009.
  • Abraham Silberschatz, Greg Gagne, Peter B. Galvin. Operating System Concepts (9th Edition). Wiley, 2013.

Mathematics

  • Mark Pinsky, Samuel Karlin. An Introduction to Stochastic Modeling (4th Edition). Academic press, 2011.
  • Howard Anton, Irl Bivens, Stephen Davis. Calculus: Early Transcendentals (10th Edition). Wiley, 2012.
  • Stephen Boyd, Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
  • Kenneth H. Rosen. Discrete Mathematics and Its Applications (7th Edition). Tata McGraw-Hill Education, 2012.
  • Thomas M. Cover, Joy A. Thomas. Elements of Information Theory (2nd Edition). John Wiley & Sons, 2006.
  • Gilbert Strang. Introduction to Linear Algebra (4th Edition). Wellesley-Cambridge Press, 2009.
  • Frederick S Hillier, Gerald J. Lieberman. Introduction to Operations Research (10th Edition). Tata McGraw-Hill Education, 2015.
  • Dimitri P. Bertsekas, John N. Tsitsiklis. Introduction to Probability. MIT, 2000.
  • Hefferon, J. Linear Algebra (3rd Edition). 2017.
  • Morris H. DeGroot, Mark J. Schervish. Probability and Statistics (4th Edition). Pearson Education, 2012.

Neuroscience

  • Dale Purves, et al. Neuroscience (6th Edition). Oxford University Press, 2018.

Programming

  • Walter J. Savitch, Kenrick Mock. Absolute Java (5th Edition). Pearson Education, 2013.
  • Stuart C. Shapiro. Common LISP: An Interactive Approach. Computer Science Press, 1992.
  • Harvey Deitel, Paul Deitel. How to Program: C. Pearson Education, 2013.